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1 IntroductionIn this article, we prove the existence of a set of determining nodes for the Ginzburg-Landau equations of superconductivity.The concept of \determining nodes" was �rst introduced in the context of theNavier-Stokes equations for viscous incompressible 
uids by Foias and Temam [8].In an e�ort to identify a �nite number of parameters controlling a turbulent 
ow, theseauthors showed that there exists a set of points (determining nodes) having the prop-erty that the values of the velocity vector at these points (nodal values) completelyand exactly determine the large-time asymptotic behavior of the 
ow. The cardinal-ity of the set of determining nodes (N) is unknown but can be estimated in terms ofthe physical parameters, at least in principle; Jones and Titi [15] give an estimate ofN in terms of the Grashof number, G. It has been conjectured on the basis of theTakens imbedding theorem [20] that, for dissipative partial di�erential equations likethe two-dimensional Navier-Stokes equations, N is in fact independent of the physicalparameters and determined entirely by the dimensionality of the spatial domain. Thisconjecture has been veri�ed for the one-dimensional Ginzburg-Landau equation byKukavica [18] (N = 2) and for the one-dimensional Kuramoto-Sivashinsky equationby Foias and Kukavica [7] (N = 4).In this article, we explore the notion of determining nodes for the Ginzburg-Landau equations of superconductivity. These equations are more complicated thanthe Ginzburg-Landau or amplitude equation commonly considered in the mathemat-ical community and studied, for example, in [18]. The Ginzburg-Landau equationsof superconductiviy are two coupled partial di�erential equations for the unknown(complex-valued) order parameter and (real vector-valued) vector potential; in time-dependent problems there is a third unknown, the real scalar-valued electric potential,which is a diagnostic variable somewhat similar to a Lagrange multiplier.We show that in the time-independent case a solution of the Ginzburg-Landauequations of superconductivity is determined completely and exactly by a �nite num-ber of nodal values, while in the time-dependent case the large-time asymptotic be-havior of the solution is determined completely and exactly by the nodal values. Inthe latter case, we allow for a time-varying but asymptotically stationary appliedmagnetic �eld; the determining nodes themselves may also vary with time.The Ginzburg-Landau equations of superconductivity admit vortex solutions,which are characterized by singularities of the complex order parameter; see [3]. Vor-tex solutions are of particular interest in solid-state physics, as well as for techno-3



logical applications. It is tempting to speculate (but by no means certain) that thedetermining nodes are related to the vortices. If so, the dynamics of the Ginzburg-Landau equations of superconductivity are determined entirely by the dynamics of thevortices|a signi�cant reduction of dimensionality. Important results in this directionwere obtained recently by Jerrard [14].The remainder of this article consists of four sections. In Section 2 we givethe classical formulation of the Ginzburg-Landau equations of superconductivity, inSection 3 the functional formulation in a Hilbert space. Section 4 contains someauxiliary estimates of the size of a function in terms of its values on a �nite point set.In Section 5 we present our results on determining nodes.2 Ginzburg-Landau EquationsIn this section we present the classical formulation of the Ginzburg-Landau equationsof superconductivity; see [10, 1, 4, 22]. We use the symbol 
 to denote the regionoccupied by the superconducting material, assuming that 
 is an open bounded subsetof Rn (n = 2; 3) with boundary @
 of class C1;1.2.1 Time-Independent EquationsThe state of a superconductor is described by a complex-valued order parameter  and a real vector-valued vector potential A. Identifying the complex plane with R2in the usual way, we have  : 
 ! R2 and A : 
 ! Rn. An equilibrium statecorresponds to a critical point of the Helmholtz free-energy functional,E[ ;A] = Z
 "����� i�r+A� ����2 + 12 �1 � j j2�2 + jr �A �Hj2# dx+ Z@
 
 ���� i� ����2 d�(x): (2.1)Here, � is the (dimensionless) Ginzburg-Landau parameter, which is the ratio of thecharacteristic length scales for the vector potential and the order parameter. Thefunction 
 is de�ned on @
, and 
(x) � 0 for x 2 @
. The other symbols have theirusual meaning: r � grad, r� � curl, r� � div, and r2 = r � r � �; i is theimaginary unit, and the superscript � denotes complex conjugation. The vector H4



represents the applied magnetic �eld ; it is a given function of position, which takesits values in Rn.A critical point of E � E[ ;A] is a solution of the boundary-value problem�� i�r+A�2  + �1 � j j2� = 0 in 
; (2.2)�r�r�A+ J s +r�H = 0 in 
; (2.3)n � � i�r+A� + 
 i� = 0 and n� (r�A�H) = 0 on @
: (2.4)Here, n is the local outer unit normal to @
. The vector J s is the supercurrentdensity, which is a nonlinear function of  and A,J s � J s( ;A) = 12i� ( �r �  r �)� j j2A = �Re � � � i�r+A� � : (2.5)Equations (2.2){(2.4) are the Ginzburg-Landau (GL) equations of superconduc-tivity. They embody, in a most simple way, the macroscopic quantum-mechanicalnature of the superconducting state. The trivial solution,  = 0 and r� A = H,represents the normal state, where all superconducting properties have been lost.Note the identities�� i�r+A�2  = 1�2� � 2i� (r ) �A� i� (r �A)�  jAj2 (2.6)and �r�r�A = �A�r(r �A): (2.7)The GL equations are invariant under a gauge transformation,G� : ( ;A) 7! � ei��;A+r�� : (2.8)For the present investigation we adopt the London gauge [22, Chapter 4], where anysolution ( ;A) of the GL equations satis�es the constraintsr �A = 0 in 
; n �A = 0 on @
: (2.9)Under these constraints, Eqs. (2.2){(2.4) reduce to� 1�2� = �2i� (r ) �A �  jAj2 + �1 � j j2� in 
; (2.10)r�r�A = J s +r�H and r �A = 0 in 
; (2.11)n � r + 
 = 0; n �A = 0; n� (r�A�H) = 0 on @
: (2.12)Henceforth, we refer to the system of Eqs. (2.10){(2.12) as the \gauged GL equations."This system will be the starting point for the functional formulation in Section 3.2.5



2.2 Time-Dependent EquationsA generalization of the GL equations to the time-dependent case was �rst proposedby Schmid [19] and subsequenly validated by Gor'kov and Eliashberg [12] in thecontext of the microscopic Bardeen-Cooper-Schrie�er (BCS) theory of superconduc-tivity. Because of gauge invariance, the generalization is nontrivial. In addition to theorder parameter and the vector potential, a third variable is needed to complete thedescription of the physical state of the system in a manner consistent with the gaugeinvariance. This is the electric or scalar potential �, a real scalar-valued function ofposition and time. It is a diagnostic variable, as opposed to the prognostic variables and A. The evolution of  and A is described by the equations�  @@t + i��! = �� i�r+A�2  + �1� j j2� in 
 � (0;1); (2.13)@A@t +r� = �r�r�A + J s +r�H in 
� (0;1); (2.14)n �� i�r+A� + i�
 = 0 and n� (r�A�H) = 0 on @
� (0;1): (2.15)The parameter � measures the ratio of the relaxation times for the vector potentialand the order parameter. Equations (2.13){(2.15), together with the expression (2.5)for J s, are the time-dependent Ginzburg-Landau (TDGL) equations of superconduc-tivity.The TDGL equations are invariant under a gauge transformationG� : ( ;A; �) 7! � ei��;A+r�; �� @t�� : (2.16)In the present investigation we adopt the generalized Lorentz or \� = �!(r � A)"(! > 0) gauge, where any solution ( ;A; �) of the TDGL equations satis�es theconstraints�+ !(r �A) = 0 in 
� (0;1); n �A = 0 on @
� (0;1): (2.17)Clearly, R
 � dx = 0 at all times. The \� = �!(r�A)" gauge generalizes the classicalLorentz gauge (! = 1) and reduces to the zero-electric potential (� = 0) as ! ! 0 [5].Under the constraints (2.17), the TDGL equations (2.13){(2.15) reduce to asystem of equations for  and A,�@ @t = �� i�r+A�2  + i��! (r �A) + �1� j j2� in 
� (0;1); (2.18)6



@A@t = �r�r�A + !r(r �A) + J s +r�H in 
 � (0;1); (2.19)n � r + 
 = 0; n �A = 0; n� (r�A �H) = 0 on @
� (0;1): (2.20)The system of Eqs. (2.18){(2.20) is supplemented by a set of initial data, which mayassume the form  =  0 and A = A0 on 
 � f0g: (2.21)Henceforth, we use the term \gauged TDGL equations" to refer to the system ofEqs. (2.18){(2.20). This system will be the starting point for the functional formula-tion in Section 3.3.The gauged TDGL equations generate a dynamical process [6]. If the appliedmagnetic �eld is time independent, the dynamical process is a dynamical system [6,21]. If the applied magnetic �eld is asymptotically stationary, the dynamical processis asymptotically autonomous and approaches a dynamical system; in this case, theomega-limit set of the dynamical process coincides with the attractor of the dynamicalsystem [17]. Finally, any solution of the TDGL equation in the \� = �!(r � A)"gauge that is gauge equivalent with a stationary physical state tends to a solution ofthe GL equations in the \r �A = 0" London gauge as time goes to in�nity [21, 16].These notions will be made more precise in Section 3.3 Functional FormulationIn this section we rewrite the Ginzburg-Landau equations in functional form.3.1 De�nitions and NotationWe begin with a summary of our notational conventions. Throughout the followinganalysis, 
 � Rn (n = 2 or n = 3), 
 is bounded, and @
 is of class C1;1. Thefunction 
 : @
 ! R is Lipschitz continuous, with 
(x) � 0 for all x 2 @
. Thesymbol C denotes a generic positive constant, not necessarily the same at di�erentoccurrences; in general, these constants depend on the parameters of the problem (
,�, �, 
, and H), but we do not indicate this dependence explicitly.All Banach spaces are real; the (real) dual of a Banach space X is denoted byX 0.The Banach spaces in this investigation are the standard ones [2, 13]: the Lebesguespaces Lp(
) for 1 � p <1, with norm k�kLp; the Sobolev spaces Hm(
) =Wm;2(
)7



for nonnegative integer m, with norm k � kHm; the fractional Sobolev spaces Hs(
) =W s;2(
) for noninteger s, with norm k�kHs; and the spaces C�(
), for � � 0, � = m+�with 0 � � < 1, of m times continuously di�erentiable functions on the closure of 
,whose mth-order derivatives satisfy a H�older condition with exponent � if � is not aninteger, with norm k �kC� . The de�nitions extend to spaces of vector-valued functionsin the usual way. Complex-valued functions are interpreted as vector-valued functionswith two real components.Because the regularity requirements for the order parameter  and the vectorpotential A are the same, we use the notation X = X2 �Xn for any Banach spaceX of real-valued functions de�ned on 
. Thus, X2 and Xn are the underlying spacesfor  and A, respectively. The basic framework for the functional analysis of theGinzburg-Landau equations is the Cartesian productH1+� = [H1+�(
)]2 � [H1+�(
)]nfor some � 2 (12 ; 1). This space is continuously imbedded in H1 \ L1.Functions of space and time de�ned on 
� [0; T ], for some T > 0, are consideredas mappings from the time domain [0; T ] into a Banach space X = (X; k � kX) offunctions on the spatial domain 
 and may be considered as elements of Lp(0; T ;X)for 1 � p �1, or Hs(0; T ;X) for nonnegative s, or C�([0; T ];X) for � � 0.A solution of the gauged GL equations is a function ( ;A) 2 H1+�, for some� 2 (12 ; 1), which satis�es Eqs. (2.2){(2.4) and the constraint (2.9) in the sense ofdistributions.A solution of the gauged TDGL equations on the interval [0; T ], for some T > 0,is a function ( ;A) 2 C([0; T ];H1+�), with values ( ;A)(t) � ( (t);A(t)) 2 H1+�,for some � 2 (12; 1), which satis�es Eqs. (2.18){(2.20) in the sense of distributions foreach t 2 (0; T ).3.2 Time-Independent CaseThe functional formulation of the gauged GL equations requires the homogenizationof the boundary conditions (2.12).Assume H 2 [L2(
)]n. Let AH be the (unique) minimizer of the convexquadratic form J � J [A], J [A] = Z
 jr �A �Hj2 dx (3.1)8



on the domainD(J) = fA 2 [H1(
)]n : r �A = 0 in 
; n �A = 0 on @
g: (3.2)The vector AH is a weak solution of the boundary-value problem�r�r�AH +r�H = 0 and r �AH = 0 in 
; (3.3)n �AH = 0 and n� (r�AH �H) = 0 on @
: (3.4)The mapping H 7! AH is linear and continuous from [H�(
)]n to [H1+�(
)]n, for0 � � � 1; see [6, Lemma 4].Given AH, we introduce the reduced vector potential A0,A0 = A�AH; (3.5)and reformulate the gauged GL equations in terms of  and A0,� 1�2� = �2i� (r ) � (A0 +AH)�  jA0 +AHj2 + �1 � j j2� in 
; (3.6)r�r�A0 = 12i� ( �r �  r �)�j j2(A0+AH) and r�A0 = 0 in 
; (3.7)n � r + 
 = 0; n �A0 = 0; n�r�A0 = 0 on @
: (3.8)The boundary conditions (3.8) are homogeneous.The abstract analog of the system of Eqs. (3.6){(3.8) is a functional equation inL2 for the vector u = ( ;A0),Au = F(u); u 2 D(A); (3.9)where A is the linear self-adjoint operator associated with the quadratic form Q �Q[u], Q[u] = Z
 � 1�2 jr j2 + jr�A0j2� dx+ Z@
 
(x)�2 j j2 d�(x); (3.10)on the domainD(Q) = D(A1=2) = fu = ( ;A0) 2 H1 : r �A0 = 0 in 
; n �A0 = 0 on @
g; (3.11)and F is a nonlinear function, which depends parametrically on AH,F(u) � F( ;A0) = ��2i� (r ) � (A0 +AH)�  jA0 +AHj2 + (1 � j j2) ;9



12i� ( �r �  r �)� j j2(A0 +AH)� : (3.12)The equation Au = f , with f = (';F ) a given element of L2, is equivalent with twoseparated boundary-value problems for  and A0,� 1�2� = ' in 
; n � r + 
 = 0 on @
; (3.13)r�r�A0 = F and r �A0 = 0 in 
; (3.14)n �A0 = 0 and n� (r�A0) = 0 on @
: (3.15)Boundary-value problems of this type have been studied by Georgescu [9]. Fromhis results we infer that D(A) is a closed linear subspace of H2. Furthermore, A ispositive de�nite in L2, because Q is nonnegative and Q[ ;A0] + ck k2L2 is coerciveon H1, for any positive constant c [11, Chapter I, Eq. (5.45)]. The fractional powersA� are therefore well de�ned for all real �: A� is unbounded for � > 0; see [13,Section 1.4]. Interpolation theory shows that D(A�) is a closed linear subspace ofH2� for all � 2 (0; 1); see [2, Chapter IV].A solution u = ( ;A0) of the functional equation (3.9) de�nes a solution ( ;A) =( ;A0+AH) of the gauged GL equations. Notice, however, that even though u is anelement of the space H2, we may not conclude that ( ;A) is in H2. IfH 2 [H�(
)]nfor some � 2 (12 ; 1), we only have AH 2 [H1+�(
)]n, so ( ;A) 2 H1+�.3.3 Time-Dependent CaseThe procedure for the gauged TDGL equations is similar. First, we homogenize theboundary conditions by introducing, at each instant t, the applied vector potentialAH(t) as in Eq. (3.1). In general, AH varies with time,AH(t) = AH(t) for t � 0. Themapping H(t) 7! AH(t) is linear, time independent, and continuous from [H�(
)]nto [H1+�(
)]n, for 0 � � � 1. Furthermore, @tAH = A@tH.Given AH(t) for each t � 0, we introduce the reduced vector potential as inEq. (3.5) and reformulate the gauged TDGL equations in terms of  and A0,�@ @t � 1�2� = �2i� (r ) � (A0 +AH)� i�(1 � ��2!) (r �A0)� jA0 +AHj2 + �1 � j j2� in 
� (0;1); (3.16)@A0@t +r�r�A0 � !r(r �A0) = 12i� ( �r �  r �)10



�j j2(A0 +AH)� @AH@t in 
� (0;1); (3.17)n � r + 
 = 0; n �A0 = 0; n�r�A0 = 0 on @
� (0;1): (3.18)In addition, we have the initial conditions =  0 and A0 = A0 �AH(0) on 
� f0g: (3.19)The abstract analog of the system of Eqs. (3.16){(3.19) is an initial-value problemin L2 for the vector u = ( ;A0),dudt +Au = F(t; u(t)) for t > 0; u(0) = u0; (3.20)where A is the linear self-adjoint operator associated with the quadratic form Q �Q[u],Q[u] = Z
 " 1��2 jr j2+ !(r �A0)2 + jr�A0j2# dx+ Z@
 
(x)��2 j j2 d�(x); (3.21)on the domainD(Q) = D(A1=2) = fu = ( ;A0) 2 H1 : n �A0 = 0 on @
g: (3.22)and F is a nonlinear function of u, which depends explicitly on t through the appliedvector potential AH,F(t; u) � F(t;  ;A0) =  1� ��2i� (r ) � (A0 +AH)� i�(1� ��2!) (r �A0)�  jA0 +AHj2 + (1� j j2) � ;12i� ( �r �  r �)� j j2(A0 +AH)� @AH@t ! : (3.23)The initial data in Eq. (3.20) are u0 = ( 0;A00) = ( 0;A0 �AH(0)).The equation Au = f , where f = (';F ) is a given element in L2, is equivalentwith two separated boundary-value problems,� 1��2� = ' in 
; n � r + 
 = 0 on @
; (3.24)r�r�A0 � !r(r �A0) = F in 
; (3.25)11



n �A0 = 0 and n� (r�A0) = 0 on @
: (3.26)The operator A has the same properties as in the time-independent case: D(A) is aclosed linear subspace of H2, A is positive de�nite in L2, the fractional powers A� arewell de�ned for all real �, and D(A�) is a closed linear subspace ofH2� for all � 2 (0; 1).Furthermore, �A is the generator of a holomorphic semigroup fe�At : t � 0g in L2.A mild solution of the intial-value problem (3.20) on an interval [0; T ] is a con-tinuous function u : [0; T ]! H1+�, for some � 2 (12; 1), that satis�es the equationu(t) = e�Atu0 + Z t0 e�A(t�s)F(s; u(s)) ds for 0 � t � T: (3.27)A mild solution u = ( ;A0) of Eq. (3.20) de�nes a solution ( ;A) = ( ;A0+AH) ofthe gauged TDGL equations.IfH 2 L1([0; T ]; [H�(
)]n)\H1([0; T ]; [L2(
)]n) for some T > 0 and � 2 (12; 1),then the initial-value problem (3.20) has a unique mild solution u = ( ;A0) on [0; T ]for any initial data u0 2 D(A(1+�)=2) [6, Theorem 1]. The mild solutions of Eq. (3.20)generate a dynamical process U = fU(t; s) : 0 � s � t � Tg on D(A(1+�)=2) by thede�nition u(t) = U(t; s)u(s); 0 � s � t � T ; (3.28)see [6, Corollary 2]. The process is such that u(t) 2 D(A) for any t > 0. A solutionu = ( ;A0) of Eq. (3.20) de�nes a solution ( ;A) = ( ;A0 + AH) of the gaugedTDGL equations.Two cases deserve special mention. First, if the applied magnetic �eld is timeindependent, the dynamical process U is, in fact, a dynamical system [6, Theorem 3].This dynamical system, S = fS(t) : t � 0g, is related to the dynamical process U bythe identity S(t� s) = U(t; s); t � s � 0: (3.29)Second, if the applied magnetic �eld varies with time but is asymptotically sta-tionary, the dynamical process U is asymptotically autonomous [17, Corollary 1].This case arises if H 2 L1([0;1); [H�0(
)]n) for some �0 2 (�; 1) and @tH 2[L1([0;1); [L2(
)]n) \ [L2([0;1); [L2(
)]n). Then limt!1H(t) exists in [H�(
)]n,de�ning the elementH1 2 [H�(
)]n,H1 = limt!1H(t): (3.30)The solution of the initial-value problem (3.20) can be compared, in the limit of largetime, with the solution of the autonomous problemdudt +Au = F1(u(t)); t > 0; u(0) = u0; (3.31)12



where F1(u) is de�ned by the same expression (3.23), with AH replaced by AH1(and @tAH by 0). This autonomous problem de�nes a dynamical system S1 onD(A(1+�)=2). The orbit of each u0 2 D(A(1+�)=2) under the dynamical process U(s+t; s) (s �xed, s � 0) and under the limiting dynamical system S1(t), t � 0, hascompact closure in H1+�, and the omega-limit set of each u0 2 D(A(1+�)=2) underU(t + s; s) (s �xed, s � 0) is a nonempty compact connected set of divergence-freeequilibria for S1 [17, Theorem 2].4 Auxiliary EstimatesIn this section we present some auxiliary estimates of the size of a function in termsof its values on a �nite point set in the domain.Let N be a �xed integer, and let E be a �nite point set in 
,E = fxj 2 
 : j = 1; : : : ; Ng : (4.1)The distance from a point x 2 
 to E isdist(x; E) = minfjx� xjj : j = 1; : : : ; Ng: (4.2)The mapping x 7! dist(x; E) de�nes a continuous function in 
, whose supremum,d � d
(E) = supfdist(x; E) : x 2 
g; (4.3)measures how well the set E \covers" the domain 
: the smaller the d, the betterthe coverage of 
. The number d is positive, and there is a point x0 2 
 such thatdist(x0; E) = d.Theorem 4.1 Let � be �xed, � 2 (12; 32). There exists a positive constant C such that,for any u 2 H1+�, ju(x)j � jujE + Cd��1=2kukH1+� ; x 2 
; (4.4)and kukH(1+�)=2 � C �juj1=2E kuk1=2H1+� + d(��1=2)=2kukH1+�� ; u 2 H1+�; (4.5)where jujE = maxfju(xj)j : xj 2 Eg. 13



Proof. Since n = 2 or n = 3, the space H1+�(
) is continuously imbedded in theH�older space C��1=2(
). Hence, there exists a constant C such thatju(x)� u(y)j � CkukH1+�jx� yj��1=2;for all x; y 2 
. Given any x 2 
, we can �nd a point xj 2 E such that jx � xjj =dist(x; E). Taking y = xj, we conclude thatju(x)j � ju(xj)j+ C(dist(x; E))��1=2kukH1+� :The estimate (4.4) follows if we replace the upper bound by its supremum.To prove the estimate (4.5), we start from the interpolation inequalitykukH(1+�)=2 � Ckuk1=2L2 kuk1=2H1+�;see, for example, [13, Theorem 1.4.4 and Exercise 5]. Because 
 is bounded, it followsimmediately from the estimate (4.4) thatkukL2 � C �jujE + d��1=2kukH1+�� ; u 2 H1+� :Applying the elementary inequality (a + b)1=2 � a1=2 + b1=2, we obtain the inequal-ity (4.5).In time-dependent problems, we will allow for the possibility that the points ofE change with time,E(t) = fxj(t) 2 
 : j = 1; 2; : : : ; Ng; t � 0: (4.6)(Of course, the results remain true if E is time independent.) The estimate (4.5)extends in an obvious way. For any u 2 L1([0;1);H1+�) and any � � 0,ku(t)kH(1+�)=2 � C �juj1=2E ;�ku(t)k1=2H1+� + d(��1=2)=2� ku(t)kH1+�� ; t � �: (4.7)where jujE ;� = supfmaxfju(xj(t); t)j : xj(t) 2 E(t)g : t � �gand d� = supfdist(x; E(t)) : (x; t) 2 
� [�;1)g:14



5 ResultsIn this section we present our results. We show how and in what sense a solution ofthe Ginzburg-Landau equations is, at least in principle, determined completely andexactly by its values on a �nite point set. The quali�er \in principle" refers to thefact that 
 must be covered su�ciently well by the point set, but we do not have anestimate of the cardinality of the point set in terms of the parameters of the problem.5.1 Time-Independent CaseThroughout this section we assume that H sats�es the hypothesisH 2 [H�(
)]n for some � 2 (12; 1): (5.1)The vector AH is de�ned by the quadratic form (3.1) on the domain (3.2), AH 2[H1+�(
)]n. The linear self-adjoint operator A is de�ned by the quadratic form (3.10)on the domain (3.11). Any vector u = ( ;A0) 2 D(A) that satis�es Eq. (3.9) de�nesa solution ( ;A) = ( ;A0 +AH) of the gauged GL equations. We recall that D(A)is a closed linear subspace of H2. Hence, while u is actually an element of H2, ( ;A)is only in H1+�.Lemma 5.1 Let BR be the ball of radius R (R > 0) centered at the origin in H1+�.Let ( 1;A1); ( 2;A2) 2 BR be two solutions of the gauged GL equations such thatu1 = ( 1;A1 �AH) and u2 = ( 2;A2 �AH) belong to D(A) and satisfy Eq. (3.9).Then the di�erence u = ( 1;A1) � ( 2;A2) belongs to D(A) and satis�es the norminequality kukH2 � CkukH1; (5.2)for some positive constant C that depends on R.Proof. Let  =  1 �  2 and A = A1 �A2, so u = ( ;A). Thenu = ( 1;A1)� ( 2;A2) = ( 1;A1 �AH)� ( 2;A2 �AH) = u1 � u2;so u 2 D(A). A straightforward calculation shows that Au is a linear function of u,Au = F(u1)�F(u2) = B( 1;A1; 2;A2)u; (5.3)where B depends quadratically on  1, A1,  2, and A2,B( 1;A1; 2;A2)u = ( ; 0)15



+ 1i� �2 [A1 � r + (r 2) �A] ; 12 [(r 1) � � (r �1) +  �2r �  2r �]�� �jA1j2 +  2(A1 +A2) �A+ (j 1j2 + j 2j2) +  1 2 �;A1( �1 +  2 �) + j 2j2A� : (5.4)Because kukH2 = kAukL2 = kB( 1;A1; 2;A2)ukL2 ;the inequality (5.2) follows if we can show that the operator norm of B : H1 ! L2 isbounded.Take any u = ( ;A) 2 H1. Then, trivially,k( ; 0)kL2 � kukL2 � CkukH1;for some positive constant C. Next, we estimate the terms in (5.4) that dependlinearly on  1, A1,  2, and A2. Using the triangle inequality and H�older's inequalityfor integrals, we havekA1 � r + (r 2) �AkL2 � kA1kL1kr kL2 + kr 2kL3kAkL6:For � 2 (12; 1), H1+�(
) is continuously imbedded in L1(
), sokA1kL1 � CkA1kH1+� � Ck( 1;A1)kH1+� :Also, H�(
) is continuously imbedded in L3(
), sokr 2kL3 � Ckr 2kH� � Ck 2kH1+� � Ck( 2;A2)kH1+� :Therefore, kA1 � r + (r 2) �AkL2 � C (kr kL2 + kAkL6) ;for some constant C that depends on R. But kr kL2 � k kH1 and H1(
) is contin-uously imbedded in L6(
), sokA1 � r + (r 2) �AkL2 � C (k kH1 + kAkH1) � CkukH1:Similarly,k(r 1) � � (r �1) +  �2r �  2r �kL2 � 2 (kr 1kL3k kL6 + k 2kL1kr kL2)� C (k kL6 + kr kL2) � CkukH1:16



The remaining terms in Eq. (5.4) depend quadratically on  1, A1,  2, and A2. Weestimate each of them separately. For example, using the triangle inequality, H�older'sinequality, and the continuous imbedding of H1+�(
) in L6(
), we havekjA1j2 +  2(A1 +A2) �AkL2 � kA1k2L6k kL6 + k 2kL6 (kA1kL6 + kA2kL6) kAkL6� C �kA1k2H1+�k kL6 + k 2kH1+� (kA1kH1+� + kA2kH1+�) kAkL6�� C (k kL6 + kAkL6) ;for some positive constant C that depends on R. ButH1(
) is continuously imbeddedin L6(
), so kjA1j2 +  2(A1 +A2) �AkL2 � CkukH1:Similarly, k(j 1j2 + j 2j2) +  1 2 �kL2 � CkukH1and kA1( �1 +  2 �) + j 2j2AkL2 � CkukH1:Combining the various estimates, we conclude that the linear operator B : H1 ! L2is indeed bounded.Theorem 5.1 Let BR be the ball of radius R (R > 0) centered at the origin in H1+�.Let ( 1;A1); ( 2;A2) 2 BR be two solutions of the gauged GL equations such thatu1 = ( 1;A1 �AH) and u2 = ( 2;A2 �AH) belong to D(A) and satisfy Eq. (3.9).Let E = fxj 2 
 : j = 1; : : : ; Ng be a �nite point set in 
 whose density d = d
(E)is de�ned in Eq. (4.3).There exists a positive number �0 such that, if d � �0 and( 1;A1)(xj) = ( 2;A2)(xj); j = 1; : : : ; N; (5.5)then ( 1;A1)(x) = ( 2;A2)(x); x 2 
: (5.6)Proof. Let  =  1 �  2 and A = A1 �A2, and de�ne u = ( ;A). Then u(xj) = 0for all xj 2 E. Furthermore, as shown in Lemma 5.1, u 2 D(A) and kukH2 � CkukH1for some positive constant C.If Eq. (5.5) is satis�ed, we have jujE = maxfju(xj)j : xj 2 Eg = 0, and theinequality (4.5), with � = 1, reduces to kukH1 � Cd1=4kukH2. Combining the twonorm inequalities, we conclude that there exists a positive constant C such thatkukH2 � Cd1=4kukH2: (5.7)17



Given this constant C, we �x �0 < C�4; such a choice is certainly possible and canbe made a priori. Then Cd1=4 < 1 whenever d � �0. But then the inequality (5.7)cannot be satis�ed unless kukH2 = 0. Hence, if d � �0, it must be the case that u = 0in 
 and, therefore, ( 1;A1)(x) = ( 2;A2)(x) for all x 2 
.Theorem 5.1 implies that a solution of the gauged GL equations is determinedcompletely and exactly in all of 
 by its values on a �nite point set E, providedE covers 
 su�ciently well. This property explains why the points of E are calleddetermining nodes. The values of the solution at the determining nodes are its nodalvalues.5.2 Time-Dependent CaseNext, we consider the time-dependent case. Throughout this section we assume thatH sats�es the hypothesisH 2 L1([0;1); [H�(
)]n) \H1([0;1); [L2(
)]n) for some � 2 (12 ; 1): (5.8)For each t � 0, the vector AH(t) = AH(t) is de�ned by the quadratic form (3.1)on the domain (3.2), AH(t) 2 [H1+�(
)]n. The linear self-adjoint operator A isde�ned by the quadratic form (3.21) on the domain (3.22). Any vector u = ( ;A0) 2C([0;1);H1+�) which satis�es Eq. (3.20) for some u0 2 D(A(1+�)=2) de�nes a solution( ;A) = ( ;A0 + AH) of the gauged TDGL equations. We recall that D(A) is aclosed linear subspace of H2. Hence, while u(t) is actually an element of H2 for allt > 0, ( ;A)(t) is only in H1+�.Lemma 5.2 Let ( 1;A1) and ( 2;A2) be two solutions of the gauged TDGL equa-tions, such that u1 = ( 1;A1 �AH) and u2 = ( 2;A2 �AH) satisfy Eq. (3.20), andlet u = ( 1;A1)� ( 2;A2). Then u(t) 2 D(A) for all t > 0, andddtkuk2H1 + �kuk2H2 � Ckuk2H1; t > 0; (5.9)for some positive constants � and C.Proof. Let  =  1 �  2 and A = A1 � A2, so u = ( ;A). Then u = u1 � u2,so u(t) 2 D(A) for all t > 0. A straightforward calculation shows that u satis�es alinear di�erential equation,dudt +Au = F(t; u1(t))�F(t; u2(t)) = B( 1(t);A1(t); 2(t);A2(t))u; t > 0; (5.10)18



where B depends quadratically on its arguments (we omit the argument t),B( 1;A1; 2;A2)u =  1� ; 0!+ 1i�  2� [A1 � (r ) + (r 2) �A] + 1� (1� ��2!) [(r �A1) +  2(r �A)] ;12 [(r 1) � � (r �1) +  �2r �  2r �]�� 1� hjA1j2 +  2(A1 +A2) �A+ (j 1j2 + j 2j2) +  1 2 �i ;A1( �1 +  2 �) + j 2j2A� : (5.11)Choosing any t > 0, we take the L2-inner product of both sides of the di�erentialequation (5.10) with Au. The result is a scalar di�erential equation,12 ddtkuk2H1 + kuk2H2 = (Bu;Au)L2 ; t > 0: (5.12)We estimate the quantity in the right member, for each t > 0, as follows.We start with the trivial estimatesj(Bu;Au)L2 j � kBukL2kAukL2 � CkBukL2kukH2:We claim that the operator norm of B : H1 ! L2 is bounded.The proof of the claim proceeds along the same lines as the corresponding proofin the time-independent case. The expression (5.11) has the same structure as thecorresponding expression (5.4); the one additional term is estimated like all the others,k(r �A1) +  2(r �A)kL2 � kr �A1kL3k kL6 + k 2kL1kr �AkL2� kA1kH1+�k kL6 + k 2kH1+�kAkH1 � CkukH1;for some constant C. Because the orbit of any initial value inD(A(1+�)=2) has compactclosure in H1+�, the constants C can be �xed independently of t.Consequently,j(Bu;Au)L2 j � CkukH1kukH2 � "kuk2H2 + C(")kuk2H1; t > 0;for any " > 0. Fixing " in the interval (0; 1), we absorb the term "kuk2H2 in the leftmember of Eq. (5.12) and let � = 2(1 � "). The inequality (5.9) follows.19



The following theorem shows that, in the limit of large time, the asymptoticbehavior of a solution of the gauged TDGL equations is determined completely andexactly by its asymptotic behavior on a su�ciently dense, possibly varying, �nitepoint set.Theorem 5.2 Let ( 1;A1) and ( 2;A2) be two solutions of the gauged TDGL equa-tions, such that u1 = ( 1;A1 �AH) and u2 = ( 2;A2 �AH) satisfy Eq. (3.20). LetfE(t) : t � 0g be a family of �nite point sets E(t) = fxj(t) 2 
 : j = 1; : : : ; Ng in 
,whose density d
(E(t)) is de�ned in Eq.(4.3).There exists a positive number �1 such that, if lim supt!1 d
(E(t)) � �1 andlimt!1 j( 1;A1)(xj(t); t)� ( 2;A2)(xj(t); t)j = 0; j = 1; : : : ; N; (5.13)then limt!1 k( 1;A1)(t)� ( 2;A2)(t)kH1 = 0 (5.14)and limt!1 [supfj( 1;A1)(x; t)� ( 2;A2)(x; t)j : x 2 
g] = 0: (5.15)Proof. Let  =  1 �  2 and A = A1 � A2, and de�ne u = ( ;A). Thenlimt!1 u(xj(t); t) = 0 for j = 1; : : : ; N . As shown in Lemma 5.2, u(t) 2 D(A)for all t > 0 and ddtku(t)k2H1 + �ku(t)k2H2 � Cku(t)k2H1; t > 0; (5.16)for some positive constants � and C.Taking any � � 0 and � = 1 in the inequality (4.7), we obtain an estimate forku(t)k2H1 in terms of the quality of the coverage of 
 by the sets E(t) for t � � andthe norm of u(t) in H2,ku(t)k2H1 � C �juj1=2E ;�ku(t)k1=2H2 + d1=4� ku(t)kH2�2 � C �jujE ;�ku(t)kH2 + d1=2� ku(t)k2H2�� "ku(t)k2H2 + C(") �juj2E ;� + d1=2� ku(t)k2H2� ; t � �;for any " > 0. (The quantities jujE ;� and d� are de�ned after the estimate (4.7).)Fixing " in the interval (0; �=C), we absorb the term "Cku(t)k2H2 in the left memberof the di�erential inequality (5.16). Thus we �nd that, for any � � 0, there exist a� > 0 and a positive constant C such thatddtku(t)k2H1 + �ku(t)k2H2 � C �juj2E ;� + d1=2� ku(t)k2H2� ; t > �:20



Given this constant C, we �x �1 < (�=C)2, so �� Cd1=2� > 0 for all d� � �1. Thenddtku(t)k2H1 + �� � C�1=21 � ku(t)k2H2 � Cjuj2E ;�; t > �;whenever d� � �1. A similar inequality holds with ku(t)k2H2 in the left memberreplaced by ku(t)k2H1, because of the continuous imbedding of H2 into H1. Thus,whenever the coverage of 
 by the point sets E(t), t � � , is uniformly better than�1 (that is, whenever d
(E(t)) � �1 for all t � � ), there exist a � > 0 and a positiveconstant C such thatddtku(t)k2H1 + �ku(t)k2H1 � Cjuj2E ;�; t > �:Given any small positive ", we �x � � � (") such that Cjuj2E ;� < ". Such a choice iscertainly possible, because limt!1 u(xj(t); t) = 0 for j = 1; : : : ; N . Having thus �xed� , we �nd that ku(t)k2H1 satis�es the di�erential inequalityddtku(t)k2H1 + �ku(t)k2H1 < "; t > �:Then Gronwall's lemma yields the estimateku(t)k2H1 < ("=�) + e��(t��)ku(� )k2H1; t > �:Since " is arbitrarily small, we conclude that limt!1 u(t) = 0 in the topology of H1.Convergence in the uniform topology on 
 follows from the fact that the orbit ofany initial value in D(A(1+�)=2) has compact closure in H1+� and H1+� is compactlyimbedded in the space of continuous functions C(
) if � > 12.5.3 Asymptotically Autonomous CaseIf the applied magnetic �eld is constant or asymptotically stationary in time, wecan be more speci�c about the long-time asymptotic behavior of the solution of thegauged TDGL equations. Since a constant �eld is a special case of an asymptoticallystationary �eld, we discuss only the latter. Instead of (5.8), we impose the strongerhypotheses H 2 L1([0;1); [H�0(
)]n) for some �0 2 (�; 1); � 2 (12 ; 1); (5.17)@tH 2 [L1(0;1; [L2(
)]n) \ [L2(0;1; [L2(
)]n): (5.18)21



Then H is asymptotically stationary, and limt!1H(t) = H1 in [H�(
)]n. Thedynamical process U de�ned on D(A(1+�)=2) by the initial-value problem (3.20) isasymptotically autonomous; its large-time asymptotic limit is the dynamical systemS1 de�ned on D(A(1+�)=2) by Eq. (3.31).Lemma 5.3 Let ( ;A) be a solution of the gauged TDGL equations, such that u =( ;A � AH) satis�es Eq. (3.20). For every �xed s (s > 0), there exist positiveconstants � and C such thatddtku(t)� u(t+ s)k2H1 + �ku(t)� u(t+ s)k2H2 � C �ku(t)� u(t+ s)k2H1+kH(t)�H(t+ s)k2H� + k@tH(t)� @tH(t+ s)k2L2� ; t > 0: (5.19)Proof. Fix s > 0 and de�ne the function v on [0;1) by the expression v(t) =u(t)�u(t+ s) for t � 0. Let  v(t) =  (t)� (t+ s) and Av(t) = A(t)�A(t+ s), sov = ( v;Av). Then v(t) 2 D(A) for all t > 0. A straightforward calculation showsthat v satis�es the linear di�erential equationdvdt +Av = F(t; u(t))�F(t+ s; u(t+ s)) = B1( (t);A(t); (t+ s);A(t+ s)) v+B2( (t);A(t); (t+ s);A(t+ s))(AH(t)�AH(t+ s))+(0; @tAH(t)� @tAH(t+ s)); t > 0; (5.20)where B1 has the same structure as B in the preceding section (cf. Eq. (5.11)),B1( 1;A1; 2;A2) v =  1� v; 0!+ 1i�  2� [A1 � (r v) + (r 2) �Av] + 1� (1� ��2!) [(r �A1) v +  2(r �Av)] ;12 [(r 1) �v � (r �1) v +  �2r v �  2r �v]�� 1� hjA1j2 v +  2(A1 +A2) �Av + (j 1j2 + j 2j2) v +  1 2 �vi ;A1( �1 v +  2 �v) + j 2j2Av� ; (5.21)andB2( 1;A1; 2;A2)(AH(t)�AH(t+ s)) = 1i�  2� (r 2 � (AH(t)�AH(t+ s)); 0!22



� 1� 2(A1 +A2) � (AH(t)�AH(t+ s)); j 2j2(AH(t)�AH(t+ s))! : (5.22)If the applied magnetic �eld is constant, the right-hand side of Eq. (5.20) reduces tothe single term involving B1.Choosing any t > 0, we take the L2 inner product of both sides of Eq. (5.20)with Av, 12 ddtkvk2H1 + kvk2H2 = (B1v;Av)L2+(B2(AH(t)�AH(t+ s));Av)L2 + ((0; @tAH(t)� @tAH(t+ s));Av)L2 ; t > 0:(5.23)The linear operator B1 is continuous from H1 into L2, just like B in the precedingsection, so j(B1v;Av)L2j � CkvkH1kvkH2 � "kvk2H2 + C(")kvk2H1;for any " > 0.We claim that B2 is a bounded linear operator from [H1+�(
)]n into L2. Theclaim is proved with the usual type of estimates; for example,k(r 2) �AHkL2 � kr 2kL3kAHkL6 � Ck 2kH1+�kAHkL6 � CkAHkH1+� :The constant can be �xed independently of t, because of the compact closure of theorbit in H1+�. Hence, if we also use the fact that the mapping H(t) 7! AH(t) iscontinuous from [H�(
)]n into [H1+�(
)]n, we �nd thatj(B2(AH(t)�AH(t+ s));Av)L2 j � CkAH(t)�AH(t+ s)kH1+�kvkH2� CkH(t)�H(t+ s)kH�kvkH2 � "kvk2H2 + C(")kH(t)�H(t+ s)k2H�;for any " > 0.Finally, we estimate the last term in (5.23). Here we use the fact that, underthe hypothesis (5.18), @tH(t) 2 [L2(
)]n for all t > 0. Then @tAH(t) = A@tH(t) 2[H1(
)]n for all t > 0, so it is certainly true thatj((0; @tAH(t)� @tAH(t+ s));Av)L2 j � Ck@tH(t)� @tH(t+ s))kL2kvkH2� "kvk2H2 + C(")k@tH(t)� @tH(t+ s)k2L2 ;for any " > 0.The inequality (5.19) results if we �x each " in the interval (0; 13) and absorb thethree terms "kvk2H2 in the left member of Eq. (5.23).23



Assuming that the point sets E(t), de�ned in Eq. (4.6), actually converge, in thesense that there exists a point set E = f�j 2 
 : j = 1; : : : ; Ng such thatlimt!1xj(t) = �j ; j = 1; : : : ; N; (5.24)we will show that the limiting values of the solution of the gauged TDGL equations onthe point set E de�ne a unique solution of the gauged time-independent GL equationsthroughout the entire domain.Theorem 5.3 Let ( ;A) be a solution of the gauged TDGL equations such thatu = ( ;A �AH) satis�es Eq. (3.20). Let fE(t) : t � 0g be a family of �nite pointsets E(t) = fxj(t) 2 
 : j = 1; : : : ; Ng in 
, whose density d
(E(t)) is de�ned inEq. (4.3), which converges in the sense of Eq. (5.24).There exist a positive number �2 and a unique solution ( 1;A1) of the gaugedGL equations (2.10){(2.12) such that, if lim supt!1 d
(E(t)) � �2, and iflimt!1( ;A)(xj(t); t)) = (�j;F j); j = 1; : : : ; N: (5.25)for some (�j;F j) 2 C�Rn, j = 1; : : : ; N , thenlimt!1( ;A)(� ; t) = ( 1;A1) (5.26)in the topology of H1 and in the topology of uniform convergence on 
. Moreover,( 1;A1)(�j) = (�j;F j); j = 1; : : : ; N: (5.27)Proof. The pointwise-convergence assumption (5.25), together with the limitingcondition (5.24), implies thatlimt!1 u(xj(t); t) = (�j;F j �AH(�j)); j = 1; : : : ; N: (5.28)Let s be �xed, s > 0, and let v be de�ned on [0;1) by the identity v(t) = u(t+ s)�u(t), t � 0. Then limt!1 v(xj(t); t) = 0 for j = 1; : : : ; N . According to Lemma 5.3,there exist positive constants � and C such thatddtkv(t)k2H1 + �kv(t)k2H2 � C �kv(t)k2H1+kH(t)�H(t+ s)k2H� + k@tH(t)� @tH(t+ s)k2L2� ; t > 0: (5.29)24



As in the proof of Theorem 5.2, we use the estimate (4.5) to relate kv(t)k2H1 to thequality of the coverage of 
 by the point sets E(t) and the norm of v(t) in H2. Forany � � 0, we have kv(t)k2H1 � C �jvjE ;�kv(t)kH2 + d1=2� kv(t)k2H2�� "kv(t)k2H2 + C(") �jvj2E ;� + d1=2� kv(t)k2H2� ; t � �;for any " > 0. (The quantities jvjE ;� and d� are de�ned after the estimate (4.7).)Fixing " in the interval (0; �=C), we absorb the term "Ckv(t)k2H2 in the left memberof the di�erential inequality (5.29). Thus we �nd that there exist a � > 0 and apositive constant C such thatddtkv(t)k2H1 + �kv(t)k2H2 � C �jvj2E ;� + d1=2� kv(t)k2H2+kH(t)�H(t+ s)k2H� + k@tH(t)� @tH(t+ s)k2L2� ; t > 0:Given this constant C, we �x �2 < (�=C)2, so ��Cd1=2� > 0 whenever d� � �2. Then,if d� � �2, we �nd that there exists a constant C such thatddtkv(t)k2H1 + �� �C�1=22 � kv(t)k2H2 � C �jvj2E ;�+kH(t)�H(t+ s)k2H� + k@tH(t)� @tH(t+ s)k2L2� ; t > �:Because of the continuous imbedding of H2 into H1, we can replace the H2 norm ofv(t) in the left member by its H1 norm. Thus, whenever the coverage of 
 by thepoint sets E(t), t � � , is uniformly better than �2, there exist a � > 0 and a positiveconstant C such that ddtkv(t)k2H1 + �kv(t)k2H1 � C �jvj2E ;�+kH(t)�H(t+ s)k2H� + k@tH(t)� @tH(t+ s)k2L2� ; t > �:Given any " > 0, we �x � � � (") such that each term in the right member is lessthan 13". Such a choice is certainly possible because the condition (5.28) implies thatlim�!1 jvjE ;� = 0, the condition (5.17) implies that limt!1 kH(t)�H(t+s)kH� = 0,and the condition (5.18) implies that limt!1 k@tH(t)� @tH(t+ s)kL2 = 0.Having thus �xed � , we �nd that kv(t)kH1 satis�es the di�erential inequalityddtkv(t)k2H1 + �kv(t)k2H1 < "; t > �:25



Applying Gronwall's lemma and returning to the original function u, we concludethat ku(t)� u(t+ s)k2H1 < ("=�) + e��(t��)ku(� )� u(� + s)k2H1; t > �:Hence, lim supt!1 ku(t)� u(t+ s)k2H1 < "�:Since " is arbitrarily small, we have shown that the values fu(t) : t > 0g of u formCauchy sequence in H1 as t!1.There exists therefore an element u1 2 H1 such thatlimt!1 ku(t)� u1kH1 = 0:The orbit of any u0 2 D(A(1+�)=2) has compact closure in H1+�. Since the injectionof H1+� into C��1=2(
) is compact, the family fu(t) : t � 0g is compact in C��1=2(
).Hence, we also have limt!1 [supfju(x; t)� u1(x)j : x 2 
g] = 0:The element u1 is associated with a pair ( 1;A01) 2 [H1(
)]2 � [H1(
)]n, whichde�nes, in turn, a pair ( 1;A1) 2 [H1(
)]2 � [H1(
)]n,( 1;A1) = ( 1;A01 +AH1):This pair necessarily satis�es the time-independentGL equations (2.10){(2.12). More-over, because of (5.28), it must be the case that( 1;A1)(�j) = (�j ;F j); j = 1; : : : ; N:It remains to prove that ( 1;A1) is uniquely determined. But this fact is an im-mediate consequence of Theorem 5.1; all we need to do is decrease �2 if necessary tomake sure that �2 � �0.AcknowledgmentsThe work of H. G. Kaper is supported by the Mathematical, Information, and Compu-tational Sciences Division subprogram of the O�ce of Computational and Technology Re-search, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work of S. Wangis partially supported by the O�ce of Naval Research under Grant NAVY-N00014-96-1-0425, by the National Science Foundation under Grants NSF-DMS-9623071 and NSF-DMS-9400615, and by the Research Fund of Indiana University.26
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